News

Compact High-Temperature Superconducting Cables Demonstrated

ScienceDaily (Feb. 18, 2011) — A researcher at the National Institute of Standards and Technology (NIST) has invented a method of making high-temperature superconducting (HTS) cables that are thinner and more flexible than demonstration HTS cables now installed in the electric power grid while carrying the same or more current. The compact cables could be used in the electric grid as well as scientific and medical equipment and may enable HTS power transmission for military applications.

Described in a paper just published online, the new method involves winding multiple HTS-coated conductors around a multi-strand copper "former" or core. The superconducting layers are wound in spirals in alternating directions. One prototype cable is 6.5 millimeters (mm) in outer diameter and carries a current of 1,200 amperes; a second cable is 7.5 mm in diameter and carries a current as high as 2,800 amperes. They are roughly one-tenth the diameter of typical HTS cables used in the power grid. (Standard electrical transmission lines normally operate at currents below 1,000 amperes.)

The main innovation in the compact cables is the tolerance of newer HTS conductors to compressive strain that allows use of the unusually slender copper former, says developer Danko van der Laan, a University of Colorado scientist working at NIST. Although the prototype cables are wound by hand, several manufacturers say mass production is feasible.

researchers are now developing prototype compact HTS cables for the military, which requires small size and light weight as well as flexibility to pull transmission lines through conduits with tight bends. Beside power transmission, the flexible cabling concept could be used for superconducting transformers, generators, and magnetic energy storage devices that require high-current windings. The compact cables also could be used in high-field magnets for fusion and for medical applications such as next-generation magnetic resonance imaging and proton cancer treatment systems.

The work was supported in part by the U.S. Department of Energy.

Source: ScienceDaily http://www.sciencedaily.com/releases/2011/02/110217151451.htm?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+sciencedaily+(ScienceDaily%3A+Latest+Science+News).

http://mobile.technologyreview.com/energy/32424/